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Abstract
Surface- and interface-sensitive optical techniques, such as optical second-
harmonic generation (SHG), allow the buried interfacial structure of
centrosymmetric materials to be explored through thin capping layers, and
magnetic SHG (MSHG) extends this to magnetic interfaces. However, the
variation of the MSHG intensity with magnetic field does not measure hysteresis
loops directly, because the loops are displaced by an amount dependent on the
crystallographic response and its phase difference with respect to the magnetic
response, and also because there is a quadratic magnetization contribution to
the SH intensity that may be significant. Two new procedures are reported
for extracting hysteresis loops directly from the MSHG intensity. The first
is applicable to all magnetic interfaces, including exchange-biased structures,
where the saturation magnetization for positive and negative magnetic fields is
equal and opposite. The second applies to all centrosymmetric hysteresis loops.
These procedures correct for the quadratic response, allowing experimental
geometries to be chosen that maximize the magnetic contribution, thus
improving the signal-to-noise ratio and the sensitivity of the technique.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Low-dimensional magnetic systems, such as ultra-thin ferromagnetic films or multi-layer stacks
of ferromagnetic and antiferromagnetic films, exhibit interesting physical phenomena not
observed in bulk magnetic systems. The magnetic properties of such low-dimensional systems
often depend sensitively on both the morphology and symmetry of the films and the substrate
on which they are grown [1]. Magnetic nanostructures must be protected from the environment
if they are to have a technological application and this is often accomplished by capping the
structure with a thin non-magnetic layer. However, capping these films with protective layers of
non-magnetic material may modify their magnetic properties [2], making the characterization

0953-8984/07/396002+13$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/39/396002
mailto:jmcgilp@tcd.ie
http://stacks.iop.org/JPhysCM/19/396002


J. Phys.: Condens. Matter 19 (2007) 396002 J F McGilp et al

of the buried interfacial region of such a capped structure essential to understanding the
underlying physics and materials science. Epioptic techniques, such as optical second-
harmonic generation (SHG), allow the buried interfacial structure of centrosymmetric materials
to be explored through thin capping layers, where conventional surface characterization
techniques are ineffective [3]. Magnetic second-harmonic generation (MSHG) extends this
technique to the exploration of magnetic surfaces and interfaces [4, 5], allowing the low-
dimensional magnetization of buried interfaces to be examined. As discussed in detail below,
the MSHG intensity from such a magnetized interface may be expressed as

I(2ω; H) ∝ |χeff
evenE(ω)E(ω) + χ eff

oddE(ω)E(ω)M(H)|2
where χ eff

even is the effective third-rank crystallographic susceptibility tensor, E(ω) is
the fundamental electric field strength, χ eff

odd is the effective fourth-rank axial magnetic
susceptibility tensor, M is the magnetization and H is the applied magnetic field. The number
of non-zero tensor components depends on the composition, crystallographic and magnetic
symmetry of the medium, and the number of these components accessed in a particular
experiment depends on the sample orientation and the optical polarization geometry.

While it is now well established that the nonlinear magneto-optic effect may be orders
of magnitude larger than the linear magneto-optic effect [6, 7], the crystallographic response
in the above equation remains, in general, substantially larger than the magnetic response,
allowing the quadratic term in the nonlinear response to be neglected. However, the signal–
noise ratio (SNR) of hysteresis loops deduced from such MSHG measurements is inherently
limited because the intensity is dominated by the non-magnetic crystallographic contributions.
This is most clearly seen for centrosymmetric loops, where equation (10) shows that the loop
is extracted directly from the difference in intensities arising from the change in the magnetic
contribution. For some magnetic interfaces, careful choice of experimental geometry allows
the crystallographic contribution to be reduced such that it is comparable to the magnetic
contribution, resulting in a significantly improved SNR. However, when this condition is
valid the MSHG intensity is no longer linearly related to the magnetization of the interface,
as has been discussed recently in interpreting MSHG studies of exchange-biased CoO/Fe
multilayers [8]. Optimizing the SNR of the MSHG measurement by reduction of the
crystallographic contribution may lead to the breakdown of the simple linear relationship
between the MSHG intensity and the interfacial magnetization under investigation.

Two new procedures are described below that allow the hysteresis loops of a magnetic
interface to be deduced from MSHG measurements where the quadratic response is significant.
A hysteresis loop is a complex, nonlinear, nonequilibrium, nonlocal phenomenon and only a
few simple curves have been calculated (using Stoner–Wohlfarth theory) [9]. However, many
of the experimental loops of simple material systems are centrosymmetric, and even the more
complex, acentric, exchange-bias systems show a remaining symmetry where the saturation
magnetization for positive and negative magnetic fields is equal and opposite [10–16]. Some
of the latter systems show a small vertical displacement of the loop of <5% [17], which the
general approach described below will not reveal. The two procedures exploit the symmetry of
the systems: the general procedure is applicable to all magnetic interfaces where the saturation
magnetization for positive and negative magnetic fields is equal and opposite; the second
procedure is easier to implement, but applies to centrosymmetric hysteresis loops only. The
two approaches account for the non-magnetic crystallographic contribution, and both the linear
and quadratic magnetization contribution to the intensity, allowing the extraction of good
quality hysteresis loops from the MSHG intensity. The effectiveness of the two procedures
is demonstrated by applying them to a range of simulated MSHG intensity measurements,
containing realistic Poissonian noise, and also to MSHG measurements of Au-capped ultra-thin
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Fe films on vicinal W(110). Although MSHG is a second-order optical process, it is shown that
the SNRs of the hysteresis loops from the Fe films are comparable to those of similar films
obtained using the first-order magneto-optic Kerr effect (MOKE) [18].

2. Theory

Within the electric dipole approximation, the nonlinear second-order polarization of a magnetic
medium can be written as

P(2ω; H) = χ cE(ω)E(ω) + χmE(ω)E(ω)M(H). (1)

Within the same approximation, for a multi-layer sample consisting of centrosymmetric
materials, the non-zero tensor components originate at the surface and interfaces only. The
magnetic term is assumed to depend linearly on the magnetization, allowing the individual
tensor components to be expressed as [19]

χi jk(ML ) = χi jk(0) + Xi jkL ML (2)

where χi jk(ML ) is the total magnetization-dependent nonlinear susceptibility component,
χi jk(0) is the crystallographic term, which is even in the magnetization, Xi jkl ML is the
magnetic term, which is odd in the magnetization, and ML is the component of the
magnetization along L. Magnetostriction effects on the crystallographic term are neglected
in equation (2).

Fresnel and local-field factors are required to obtain the general expression for the SH
intensity. These factors depend on parameters such as the angle of incidence, and the input and
output polarization, but do not vary significantly with the magnetic field. For the purposes of
determining hysteresis loops, where only the applied magnetic field, H , is varied, the Fresnel
and local-field factors can be included in an effective tensor component, giving (appendix A)

Pi (2ω, θ; ML ) = {χ eff
i jk(0) + X eff

i jkL ML }E j(ω)Ek(ω). (3)

The MSHG intensity, to within a scaling factor, can be expressed as

I (2ω, ML ) = |χ eff
even|2 + {|X eff

odd|ML }2 + 2|χ eff
even|{|X eff

odd|ML } cos δ (4)

where δ is the phase difference between the even crystallographic and the odd magnetic
contributions. Reversal of the magnetization thus produces a phase shift of π , which has
been demonstrated experimentally for a multilayer system [20]. Equation (4) can be solved
for {|X eff

odd|ML }, which is proportional to the magnetization:

{|Xodd|M} = −γ ±
√

I (M) + γ 2 − |χeven|2 (5)

where eff and L are dropped for convenience, γ = |χeven| cos δ and the root is real. The
hysteresis curve can be determined from equation (5) if |χeven| and δ are known. These
parameters can be evaluated directly from the MSHG intensity data for systems where the
saturation magnetization, M sat±, is equal and opposite when the field is reversed. For such
symmetric saturation conditions it is shown in appendix A that

γ = 1
2 {√I sat+ − I tp − √

I sat− − I tp} and tan δ = √
I tp/γ (6)

where I sat± are the saturation intensities and I tp is the intensity at the turning point of the
MSHG curve (see figure 1(c), left panel). Thus a quantitative extraction of the hysteresis curve
is possible in situations where a turning point can be identified, and χeven and δ can also be
determined.

Where the magnetic contribution is small relative to the crystallographic contribution, the
quadratic term in equation (4) can be neglected, giving

I (M) = |χeven|2 + 2|χeven|{|Xodd|M} cos δ. (7)
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Figure 1. Left panels: simulated acentric and exchange-biased MSHG response for |χodd/χeven| =
1.5. Centre panels: extracted magnetization loops, using equations (5) and (6), compared to the
actual loop (solid lines). Right panels: extracted magnetization loops, using equation (8), which
neglects the quadratic term. (a) δ = 0◦, (b) δ = 30◦, (c) δ = 70◦, (d) δ = 130◦. Examples of
saturation and turning point positions are shown in (c), left panel. The loop has an exchange bias of
−95 mT, with total coercivity of 40 mT.

Symmetric saturation conditions then give

{|Xodd|M} cos δ = I (M) − 1
2 (I sat+ + I sat−)√

2(I sat+ + I sat−)
. (8)

This expression is equivalent to previous linearized expressions [7]. Finally, there is an
intermediate situation where, although the magnetic contribution is not small, the MSHG
intensity does not show a turning point. In this situation, appendix A shows that a simple
approximation is to set I tp = 0, giving

γ = 1
2 {√I sat+ + √

I sat−} and |χeven| = γ. (9)
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The above equations allow some special cases to be identified. For δ = π/2 and δ = 3π/2,
cos δ = 0 and the linear cross-term vanishes in equation (4), giving I sat− = I sat+ in the MSHG
intensity plot. Only the quadratic term contributes to the magnetic response, preventing the
determination of hysteresis curves unless the magnetic contribution is comparable to, or larger
than, the crystallographic contribution. For δ = 0 and π , I tp = 0 (appendix A); the turning
point, where it exists, occurs at zero intensity.

For the centrosymmetric loops often found with simple ferromagnetic and superparamag-
netic interface structures, appendix B shows that

M±(H ) ∝ I ±(2ω, H ) − I ∓(2ω,−H ) (10)

where M+(H ) has H increasing from an initial negative value, and M−(H ) has H decreasing
from an initial positive value, with I +(2ω, H ) and I −(2ω, H ) the corresponding intensities.

3. Experiment

Sample preparation of the Au-capped ultra-thin Fe films is described in detail elsewhere [21].
Pseudomorphic Fe films were grown under ultra-high-vacuum conditions (base pressure
<4 × 10−11 mbar) on a clean vicinal W(110) single-crystal substrate, offcut 1.4◦ in the
[11̄0] direction. The Fe films were protected from ex situ contamination by a 12–16 nm
thick capping layer of Au. The capped samples were placed in an optical cryostat and the
MSHG measured at near-normal incidence, at 80 K, as a function of applied magnetic field
strength. A femtosecond laser system, tuned to 1.55 eV, was used as the fundamental frequency
light source. Calculations predict a strong MSHG response from the Fe films in this spectral
region [22]. Unamplified, 130 fs Ti:sapphire laser pulses of average power of 0.9 W were used,
at a repetition rate of 76 MHz and with a beam size of 40 μm at the sample. A good SNR
was obtained for these samples when the fundamental beam was directed towards the sample
surface at near-normal incidence. The input polarization was then adjusted such that it was
offset by <5◦ from the [001] direction of the atomic steps of the vicinal W(110) surface, while
the output polarizer was adjusted so that only the intensity of MSHG polarized parallel to the
steps was measured. The samples were magnetized along their easy axis in the [11̄0] direction,
which is in the sample plane orthogonal to the direction of the atomic steps.

4. Results and discussion

Many simple magnetic interfaces show centrosymmetric hysteresis loops, but there is
considerable interest currently in more complex, exchange-biased thin film systems, some of
which show acentric hysteresis loops [10, 11, 13, 16]. Figures 1–3 show, in the left panels, the
simulated MSHG response, with added Poissonian noise, arising from an acentric hysteresis
response, exchange-biased by −95 mT (solid lines in centre and right panels). The shape of the
loop is similar to that observed from exchange-biased, virgin CoO/Co bilayers [12].

The left panel of figure 1 shows the response for |χodd/χeven| = 1.5, with various values
of the phase difference, δ, and noting that cos δ = cos(360◦ − δ). It can be seen that, as
δ increases, the turning points change from being barely discernable to being well defined.
For 180◦ > δ > 90◦, the curves are reflected about a vertical axis. The results of applying
equations (5) and (6) are shown in the centre panel, where a local fit was used to find the
positions of the turning point. In general, very good agreement with the model loop is obtained.
The extracted curve is noisy where the MSHG signal is small, as is to be expected. Also, in
the region of the turning point, where the square root in equation (5) is close to zero, some
points may be lost where the noise renders the root imaginary. Equation (5) shows that,
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Figure 2. Left panels: simulated MSHG response for |χodd/χeven| = 0.75. Centre panels:
extracted magnetization loops, compared to the actual loop (solid lines); (a), (b) using approximate
equations (5) and (9); (c), (d) using equations (5) and (6). Right panels: extracted magnetization
loops, using equation (8), which neglects the quadratic term. (a) δ = 0◦, (b) δ = 30◦, (c) δ = 70◦,
(d) δ = 130◦.

where 180◦ > δ > 90◦, cos δ and thus γ changes sign, producing the reflected curves of
figure 1(d). The right panel of the figure shows the results of using equation (8), which neglects
the quadratic term. Even where the turning point is indistinct, the shape of the extracted loop
differs significantly from the model and there is a large error in the exchange bias.

Figure 2 shows equivalent results for |χodd/χeven| = 0.75. The turning points in
figures 2(a) and (b), left panel, could not be identified and equations (5) and (9) were used
to find approximate solutions. The agreement with the model loop is very good (centre
panel), while using equation (8), which neglects the quadratic term, produces a much poorer
result (right panel). Turning points were found for figures 2(c) and (d), allowing the use
of equations (5) and (6), but figure 2(d) shows a deviation from the model loop near zero
magnetization, probably indicating an error in the fitted turning point values.
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Figure 3. Left panels: simulated MSHG response for |χodd/χeven| = 0.25. Centre panels: extracted
magnetization loops, using approximate equations (5) and (9), compared to the actual loop (solid
lines). Right panels: extracted magnetization loops, using equation (8), which neglects the quadratic
term. (a) δ = 0◦, (b) δ = 30◦, (c) δ = 70◦, (d) δ = 130◦.

Figure 3 shows the results for |χodd/χeven| = 0.25. No turning points could be identified
and equations (5) and (9) were used to find approximate solutions. The agreement with the
model loop is again very good (centre panel), but neglecting the quadratic term now produces
only a small error in the exchange bias (right panel), as is to be expected with the reduced
magnetic contribution. Figure 3(c) shows that the combination of a small magnetic contribution
and a value of δ near 90◦ results in a noisy and inaccurate hysteresis loop, if, indeed, a loop can
be extracted at all.

Summarizing the simulation results for acentric loops, accurate curves can be extracted
where turning points can be identified. The extracted loop then allows the exchange-bias and
total coercivity fields (the width of the loop at zero magnetization), and also |χodd/χeven| and
the phase shift δ, to be obtained. Errors in the fields are estimated at �1 mT. Where the
approximate approach has to be used, very good loops can be obtained with typical errors in
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Figure 4. Left panels: simulated centrosymmetric MSHG response for δ = 130◦. Centre panels:
extracted magnetization loops using approximate equations (5) and (9), compared with the actual
loop (solid lines). Right panels: extracted magnetization loops using symmetry and equation (10).
(a) |χodd/χeven| = 1.5, (b) |χodd/χeven| = 0.75, (c) |χodd/χeven| = 0.25.

the fields of �3 mT. Highly vertically compressed loops are an exception to this, the error in
the exchange-bias of figure 3(c) being 7 mT. The linear approximation leads to larger errors in
all cases examined.

For simpler magnetic interfaces, centrosymmetric hysteresis loops are often observed,
allowing the use of equation (10) to extract the hysteresis loop. Figure 4 shows the results
for δ = 130◦ and the previous range of values of |χodd/χeven|. The centre panel shows the loops
extracted using equation (5) with the approximate equation (9), while the right panel uses the
exact equation (10) for centrosymmetric loops. The variation in the noise in the extracted loops
reflects the different methods of extraction. Both methods produce very good results, but the
simple and elegant equation (10) is clearly the preferred approach for centrosymmetric loops.

These methods are now applied to real data, obtained as described in section 3. Figure 5
shows MSHG intensities at 80 K, for 0.75 and 3.0 ML Fe ultra-thin films, grown on vicinal
W(110) and capped by 12 and 16 nm of Au, respectively. The MSHG response shows the
offset from zero, which is determined by the relative size of the crystallographic response,
χeven, and the phase shift, δ. The suggested methodology is to apply the general approach
first to determine whether the extracted loop is significantly acentric or exchange-biased. The
result will then determine whether the centrosymmetric formula should be used. Figure 5(a)
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Figure 5. MSHG data for W(110)/Fe/Au nanostructures. Left panels: MSHG response for
(a) 0.75 ML Fe, (b) 3 ML Fe. Centre panels: extracted magnetization loops using approximate equa-
tions (5) and (9) for (a) and equations (5) and (6) for (b). Right panels: extracted magnetization loops
using symmetry and equation (10). Solid lines are fits to the extracted loops using sigmoidal curves.

shows the results for the 0.75 ML film, where the solid lines are now fits of the extracted
loops to sigmoidal functions, which allow good estimates of any exchange bias. Although
close to saturation, it is possible that this loop is not fully saturated. The centre panel shows
that the general approach, using equation (5) and the approximate equation (9), produces a
centrosymmetric loop with a very small apparent exchange bias of 3 ± 1 mT. This places an
upper limit on the exchange bias, and is within the range of the estimated error associated with
the approximate approach, discussed above. The result allows the centrosymmetric formula to
be used, with the knowledge of a possible small exchange-bias error. The right panel shows the
result of using equation (10), and the fit to the extracted data gives a coercivity of 32 ± 1 mT
for the capped 0.75 ML Fe film. The coercivity agrees well with previous Kerr effect results
for this material system, although the Kerr loops were a little squarer [23].

Figure 5(b) shows the results for the 3.0 ML film. Turning points are clearly seen, allowing
the exact general approach to be used. The centre panel shows the extracted hysteresis loop and
the sigmoidal fits that show a centrosymmetric loop of coercivity 35±1 mT and zero exchange
bias, within error. The right panel shows the result of the direct centrosymmetric extraction,
which gives a coercivity for the 3.0 ML Fe film of 33 ± 1 mT. The general approach also
gives |χodd/χeven| = 1.90 ± 0.02 and a phase shift between the non-magnetic and magnetic
components of 76 ± 1◦.

All the extracted loops have an SNR comparable to the linear magneto-optic Kerr effect
(MOKE) results from vicinal W(110)/Fe [18, 23]. Accounting correctly for the quadratic
response allows experimental geometries to be chosen that maximize the magnetic nonlinear
response in a given system, thus improving the SNR.

5. Conclusion

Two new procedures have been derived that allow the hysteresis loops of magnetic interfaces to
be determined directly from MSHG intensity measurements in situations where the quadratic
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response is significant. The first procedure is applicable to all magnetic interfaces, including
exchange-biased systems, provided the saturation magnetization for positive and negative
magnetic fields is equal and opposite. The second procedure is less general, but easier to
implement, and applies to all centrosymmetric hysteresis loops, including those of complex
shape. These procedures correct for the crystallographic offset without the need to attempt to
measure the crystallographic response separately. Both procedures account for the quadratic
magnetization contributions to the intensity, allowing the extraction of good quality hysteresis
loops directly from the MSHG intensity. The effectiveness of these two procedures has been
demonstrated by applying them to a range of simulated MSHG intensity curves, containing
realistic Poissonian noise. A methodology has been suggested whereby the general approach
can be used to determine whether the extracted loops are significantly acentric or exchange-
biased. If they are not, then the simpler centrosymmetric approach can be used with confidence.
These procedures will not detect the small vertical shifts of the loops reported for some
exchange-bias systems [17], but such shifts should not affect, significantly, the extracted loop
shape or the key field parameters determined from it. The methodology has been applied to
MSHG intensity measurements of Au-capped ultra-thin Fe films grown on vicinal W(110)
and good quality hysteresis loops extracted. Although MSHG is a nonlinear optical process,
the SNRs of the hysteresis loops from the Fe films are comparable to those of similar films
obtained using the first-order magneto-optic Kerr effect (MOKE) [18]. The importance of this
result is that, by correctly accounting for the quadratic response, an experimental geometry can
be chosen that maximizes the magnetic nonlinear response of a particular interfacial system,
thus improving the sensitivity of the technique.
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Appendix A. Derivation of the general expression for interfaces where the saturation
magnetization for positive and negative fields is equal and opposite

Equations (1) and (2) of section 2 require the introduction of Fresnel and local-field factors to
obtain the general expression for the SH intensity. These factors depend on parameters such
as the angle of incidence, and the input and output polarization, but do not vary significantly
with the magnetic field (linear magneto-optic effects are very small). Equations (1) and (2) then
give

Pi (2ω, θ; ML ) = fi jk(ω, 2ω, θ)Lii (2ω)L j j(ω)Lkk(ω){χi jk(0) + Xi jkL ML }E j(ω)Ek(ω)

(A.1)

where fi jk(ω, 2ω, θ) is a Fresnel factor for angle of incidence θ , and Lii (2ω) is a local-field
factor [24]. For the purposes of determining hysteresis loops, where only the applied magnetic
field, H , is varied, the Fresnel and local-field factors can be included in an effective tensor
component, giving

Pi (2ω, θ; Ml ) = {χ eff
i jk(0) + X eff

i jkL ML }E j(ω)Ek(ω). (A.2)

The input and output polarizations, and the magnetization direction, will determine values
of i , j , k and L and are fixed in a given hysteresis loop measurement. The MSHG intensity
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now can be written, within a scaling factor, as

I (2ω,±ML ) = |χ eff
even|2 + |X eff

oddML |2 ± 2|χ eff
even||X eff

oddML | cos δ (A.3)

where δ is the phase difference between the even crystallographic and the odd magnetic
contributions. The effective tensor components of equation (A.2) for the particular interfacial
structure and experimental geometry have been summed to obtain a total χ eff

even and X eff
odd, which

now include the outgoing Fresnel coefficients at frequency 2ω. Reversal of the magnetization
produces a phase shift of π , which has been demonstrated experimentally for a multilayer
system [20]. As |X eff

oddML | = |X eff
odd||ML | and ML is real, equation (A.3) can be re-expressed as

I (2ω, ML ) = |χ eff
even|2 + {|X eff

odd|ML }2 + 2|χ eff
even|{|X eff

odd|ML } cos δ (A.4)

to within an arbitrary scaling factor. Equation (A.4) can be solved for {|X eff
odd|ML }, which is

proportional to the magnetization:

{|Xodd|M} = −|χeven| cos δ ±
√

I (M) + |χeven|2 cos2 δ − |χeven|2
= −γ ±

√
I (M) + γ 2 − |χeven|2 (A.5)

where eff and L are dropped for convenience, γ = |χeven| cos δ, and the root is always real
(I (M) + γ 2 − |χeven|2 = ({|Xodd|M} + γ )2 > 0). The magnetization varies continuously with
the applied magnetic field, H , and differentiation of equation (A.5) with respect to H allows a
turning point (tp) to be identified:

dI (M)/dH = 2|χeven|{|Xodd|(dM/dH )} cos δ + 2{|Xodd|2 M(dM/dH )} = 0.

If the hysteresis curve is sigmoidal, (dM/dH ) �= 0 for |M| < |M sat| and can be cancelled (care
will be required with more complicated hysteresis curves), giving

{|Xodd|M}tp = −|χeven | cos δ = −γ and, from (A.4), I tp = |χeven|2 − γ 2. (A.6)

Equation (A.5) then shows that the value of the root is zero at the turning point, where its
contribution changes sign. If the magnetic contribution is small relative to the crystallographic
response, equation (A.6) shows that a turning point may not exist.

The hysteresis curve can be determined from equation (A.5) if |χeven| and δ are known.
These parameters can be evaluated directly from the MSHG intensity data for systems where
the saturation magnetization, M sat±, is equal and opposite when the field is reversed. For such
symmetric saturation conditions,

{|Xodd|M sat+} = −γ + √
I sat+ − I tp

{|Xodd|M sat−} = −γ − √
I sat− − I tp = −{|Xodd|M sat+}

giving

γ = 1
2 {√I sat+ − I tp − √

I sat− − I tp} and tan δ = √
I tp/γ. (A.7)

Where the odd contribution is very small relative to the even contribution, the quadratic
term in equation (A.4) can be neglected, giving

I (M) = |χeven|2 + 2|χeven|{|Xodd|M} cos δ. (A.8)

Symmetric saturation conditions then give

{|Xodd|M}sat+ = (I sat+ − |χeven|2)/2|χeven| cos δ

{|Xodd|M}sat− = (I sat− − |χeven|2)/2|χeven| cos δ = −{|Xodd|M}sat+

and |χeven|2 = 1
2 (I sat+ + I sat−).

11
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Thus,

{|Xodd|M} cos δ = I (M) − 1
2 (I sat+ + I sat−)√

2(I sat+ + I sat−)
. (A.9)

Finally, there is an intermediate situation where, although the magnetic contribution is not
small, the MSHG intensity does not show a turning point. In this situation

I sat− = |χeven|2 + 2|χeven|{|Xodd|M sat−} cos δ + {|Xodd|M sat−}2

and, from equation (A.6), I tp = |χeven|2(1 − cos2 δ), giving

I sat− = I tp + |χeven|2 cos2 δ + 2|χeven|{|Xodd|M sat−} cos δ + {|Xodd|M sat−}2

= I tp + (|χeven| cos δ + {|Xodd|M sat−})2. (A.10)

Equation (A.10) shows that I sat− � I tp � 0, the intensity at the turning point always lying
below the negative saturation intensity. This suggests that the simplest approximation is to set
I tp = 0, giving

γ = 1
2 {√I sat+ + √

I sat−} and |χeven| = γ (A.11)

where, in the absence of a turning point, only the positive root of equation (A.5) exists, leading
to a summation, in contrast to equation (A.7), where a difference was obtained.

Appendix B. Derivation for systems where the hysteresis loop is centrosymmetric

The MSHG intensity is given by

I (2ω, H ) = |χeven + χoddM(H )|2 (B.1)

where the dependence of the magnetization, M , on the magnetic field, H , is now shown
explicitly. Both the MSHG intensity and the magnetization are assumed to comprise two
curves: right-hand curves, I +(2ω, H ) and M+(H ), where H is increasing from an initial
negative value, and left-hand curves, I −(2ω, H ) and M−(H ), where H is decreasing from an
initial positive value. Equation (A.4) for the two curves can be re-expressed as

I ±(2ω, H ) = |χeven|2 + {|Xodd|M±(H )}2 + 2|χeven|{|Xodd|M±(H )} cos δ. (B.2)

For interfaces where the hysteresis loops are centrosymmetric, M+(H ) ≡ −M−(−H ).
Applying this identity to equation (B.2) for the two curves,

I ±(2ω, H ) = |χeven|2 + {|Xodd|M∓(−H )}2 − 2|χeven|{|Xodd|M∓(−H )} cos δ. (B.3)

It follows from equation (B.3) that

I ∓(2ω,−H ) = |χeven|2 + {|Xodd|M±(H )}2 − 2|χeven|{|Xodd|M±(H )} cos δ. (B.4)

The difference of equations (B.2) and (B.4) is

I ±(2ω, H ) − I ∓(2ω,−H ) = 4|χeven|{|Xodd|M±(H )} cos δ (B.5)

and thus

M±(H ) ∝ I ±(2ω, H ) − I ∓(2ω,−H ). (B.6)
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